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ACT 2600. Australia 

Received 21 April 1978 

Abstract, Graphical expansions are used to obtain exact solutions for correlations in  
symmetric models of crystal growth disorder. These models are equivalent to king models 
with fields and competing multi-spin interactions constrained so as to give an effective 
reduction in dimensionality. The graphical solutions illustrate the importance of symmetry 
in these models and indicate the way in  which an effective reduction in  dimensionality 
occurs. 

It  is shown that there are particular temperatures at which all correlations in  a 
first-and-second-neighbour square lattice king model and certain correlations in an 
anisotropic FCC model can be obtained explicitly. 

1. Introduction 

In the earlier papers in this series (Enting 1977a, b, 1978a, to be referred to as I,  I1 
and 111) the author has investigated connections between Ising models in statistical 
mechanics and a class of stochastic lattice models which have been used to model the 
growth of disordered mixed crystals. In the studies of these models of crystal growth 
Welberry and co-workers (Welberry and Galbraith 1973, 1975, Welberry 1977a, b, 
Galbraith and Walley 1976, Welberry and Miller 1977, 1978) used extensive simula- 
tions but were also able to obtain a number of exact solutions for various correlations. 
This was somewhat surprising since the crystal growth models are equivalent to quite 
complicated Ising models (see I). 

An explanation of why these special Ising models turn out to be soluble lies in the 
observation that the crystal growth models correspond to king models with competing 
interactions and that many of the models correspond to Ising models at the disorder 
points. Disorder points (Stephenson 1970a) are points at which the competition 
between interactions leads to a change in the behaviour of the correlations and 
actually at the disorder point the correlations have a particularly simple structure. 
Gibberd (1969) was able to obtain graphical techniques for deriving expressions for 
the correlation functions at the disorder point; these solutions exploited the special 
simplifications occurring, unlike the general technique used by Stephenson. The 
present paper extends Gibberd’s technique to a wider class of crystal growth models. 

There are a number of reasons why correlation solutions in these models are of 
interest: 

(i) In disordered crystals it is the correlations which can be measured experi- 
mentally by diffraction techniques. 
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(ii) Welberry (1977a) has conjectured (on the basis of numerical calculation of 
short-range correlations) that growth models with rectangular symmetry have 
exponentially decaying correlations. For the zero-field case this has been 
confirmed by the exact solution for correlations along the axes (see I) and, for 
general models with rectangular symmetry, by Pickard (1977). The solutions 
below confirm Welberry’s conjecture. 
I t  was pointed out in I1 that the exact solutions of crystal growth models gave 
constraints for Ising model series expansions. (Such constraints might be used 
to help derive further series, see Sykes er a1 (1975)) 
The solutions obtained below indicate the type of cancellation obtained and 
show how crystal growth models have a reduction in the effective dimen- 
sionality. Previously this effect has been noted by Stephenson (1970a), Wel- 
berry and Miller (1978) and implicitly by Verhagen (1976) 
The solutions also illustrate some of the connections between the growth 
model formulated as a Markov process and the Markov random field charac- 
terisation of Ising models. This connection has been discussed by Enting and 
Welberry (1978). The Markov random field characterisation of Ising models 
has been exploited by Enting (1977~)  in the derivation of triplet order 
parameters on triangular and honeycomb Ising models. 

The layout of the remainder of the paper is as follows. Section 2 describes the 
crystal growth models and the various possible parametrisations. The exact solutions 
which have been obtained are reviewed. In $3 the one-dimensional Ising model is 
described in terms of statistical mechanics, as a Markov random field and as a growth 
model (or Markov chain). This shows some of the relations between the various 
characterisations and provides a basis for interpreting results obtained in two-dimen- 
sional models. Section 4 generalises the graphical expansion technique used by 
Gibberd (1969) and applies to systems with particular symmetries. In $5 the method 
is used to exhibit the special structure of the models considered by Verhagen (1976) 
and by Welberry and Miller (1977). 

This latter model is of considerable interest because it corresponds to an anisotro- 
pic FCC model with only two-site interactions (albeit competing interactions). 

2. Crystal growth models 

The models used by Welberry and co-workers in the study of the growth of mixed 
disordered crystals had earlier been investigated by a number of statisticians (see for 
example Whittle 1954, Bartlett 1967, Besag 1974). 

In the general form one has a lattice on which a partial ordering or precedence 
relation is defined on the sites. The basic assumption is that the probabilities for the 
state of any site depend only on the states of sites preceding it .  Although Enting 
(1978b) has described one application to a system with three-state variables, the 
present discussion will follow the bulk of previous work in confining itself to binary 
variables where the variable at site r is denoted by a, = * 1. We shall use the symbol 
a, to denote both the random variable a, and its possible values s, so that we write 
probabilities as P ( a r )  rather than P(a,=s,). The whole set of a, is denoted by the 
vector U of a, values. The probability of a particular set of values U is given by 

P(u) = n P(ar  1 predecessors of r )  
r 
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and 

P ( g r  1 predecessors) = $( 1 + * f(predecess0rs)). ( 2 . 2 )  
In practice we shall be interested only in cases where the probability depends only on 
a small number of neighbouring predecessor sites. In particular we shall consider a 
square lattice with sites indexed by pairs of integers (i, j )  such that (i’, j ’ )  is a prede- 
cessor of ( i ,  j )  if i ’  

We assume that the probability of mi, depends only on CT~,,-I, ui-~,, and oi-l. ,-l.  

There are thus 16 conditional probabilities associated with the 16 possible configura- 
tions on the set of four sites. Only eight of these are independent. It was shown in I 
that the probability distribution P(u)  is (ignoring boundary effects) equivalent to the 
distribution obtained from an Ising model with multi-site interactions. The inter- 
actions were a field, a nearest-neighbour interaction along each axis, a second- 
neighbour interaction on each diagonal, four three-site interactions and a four-site 
interaction. Expressions were given for the ten interaction strengths in terms of the 
conditional probabilities (equation (7a)-(7f) of I). Since there are only eight 
independent probabilities we have two implicit constraints on the interaction 
strengths. The equations given in I parametrise the Ising interactions Ji in terms of 
exp(-Ji/kT). For many purposes it is convenient to use the variables tanh(Ji/k7‘) so 
that we can work with expressions which are linear in the vi, variables. Without going 
into details of the parametrisation it is still possible to review the results which have 
been obtained for correlations. 

Pickard (1977) has shown that of the square lattice growth models described 
above, the models with rectangular symmetry (i.e. mirror lines parallel to both axes) 
have two-site correlations which decay exponentially. This behaviour had been con- 
jectured by Welberry (1977a) and a graphical derivation of the results is given below. 
Pickard’s solution is based on a comparison of alternative characterisations of the 
process. An algebraic derivation of the zero-field correlations for rectangular sym- 
metry is given in 111. 

For the anisotropic triangular lattice at its disorder point (characterised by 
tanh(PJ1) tanh(PJz) = - tanh(PJ3)) Gibberd (1969) obtained a graphical solution for 
some of the two-site correlations. This graphical approach is generalised in the 
following sections. 

It should be noted that Welberry and Galbraith (1973) were able to evaluate 
all correlations in the triangular model at its disorder point, by using algebraic 
techniques. The present paper concentrates on graphical solutions because these 
techniques exhibit the general properties of the solution which are often more 
informative than the solutions themselves. 

i and j ’  j but (i’, j )  # ( i ,  j ) .  

3. The one-dimensional Ising model 

The one-dimensional king model has its energy given by 
N 

E =  ( - JcT , ,u , ,+~-H~~)  
n = l  

and from the basic formalism of statistical mechanics the probability of any spin 
configuration U is given by 

P(u) = 2-’ exp( - E ( o ) / k T )  (3.2) 
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where 2, the partition function, acts as a normalising factor. Using a linearisation 
technique due  to van der Waerden (1941) we can write (3.2) as 

(3.3) 

where U = tanh(J/kT) and h = t anh(H/kT)  and C is another normalising factor. To 
convert this expression into a growth model expression we split the field into two 
contributions so that apart from boundary corrections, 

N 

P ( a ) = D  n (1+hlan)(1+uanan,l)(l +h2~n+1)  
n = l  

N 

= D n [( 1 + h 1 ~ h 2 )  + (+n (h  1 + ~ h 2 )  + u n +  l(h2 + oh 1) + u n ( + n +  1(u + h 1 h2)l 
n = l  

(3.4) 

(hi +hz) / ( l+  h i h z ) =  h (3.5) 
where 

and D is yet another irrelevant normalising factor 
If we choose h l  such that 

hi  + vh2=0 
i.e. 

h2= [ ( U  - ~ ) - J ( u  - 1 ) 2 + 4 h 2 ~ ] / 2 h ~  

then we can interpret each factor in (3.4) as a growth model conditional probability 
and we have 

P(on + i 1 an ) = $1 1 + an + 1 [ ( h  z + ~h 1) + an (U + h 1 h 2)] / ( 1 + ~h 1 h 2)) (3.8) 

(3.9) 

and  

P ( 0 )  = rI P(an + 1 Ian 1. 
n 

Assuming a sufficiently large system so that we have translational invariance we can 
write 

whence 
M =  ( ( + n i l ) =  [(h2+ ~hl)+((+n)(U +hlh2)]/(1 + ~ h 1 h 2 )  

(3.10) 

using the techniques described by Welberry and Galbraith (1973, 1975) (see also I 
and 111). 

A n  alternative factorisation which can be used to obtain (aj)  is to write 

P(a)K n (1 +hlam)(1 +h2am+1)(1+ VvmUm+l) 
m s j  

x n [(I +hlcm+1)(1 +hzam)(1 +~amam+l)l(l+hzaj)(l-hlaj) 
m 
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To evaluate 

(a,)= c u , P ( o )  
( 0 )  

we have to sum over all terms in the product in which all the ui variables appear an 
even number of times. In fact the only such factor is U, x 1 x 1 . .  . x  1 x 
1 . .  .u j (hz-hl) / ( l  -hlhz) .  Any attempt to include other factors generates a product 
which closes (if at all) only at the boundaries. Any contribution other than 1 from the 
m = j factor brings in with an odd power. If this is cancelled by a contribution 
from the m = j +  1 factor we bring in u,+2 with power one  and so on. For U < 1 and 
sufficiently small h such contributions will not be significant if j is sufficiently far from 
the boundaries. Thus 

(U,)  = ( h z - h i ) / ( l  - h i h z )  (3.12) 

where we have used (1) = 1 to determine the normalising factor in (3.11). 
What we have used is the property that the growth model conditional probabilities 

are linear in one  of the u, variables. If one  has a symmetry in the model one  can factor 
P ( a )  into expressions corresponding to all growth outward from some central region 
of interest so that none of the growth model probabilities contribute to expectations in 
the region. The only factors which d o  contribute are the corrections. The  product of 
growth probabilities in (3.11) includes (1 + h la , )  twice and omits (1 + h z u j )  and so we 
have the final factor as a correction. 

Gibberd's graphical analysis is just a two-dimensional analogue of this trick. In 
this case the overlap or correction region is a line rather than a single point and so 
correlations correspond to a one-dimensional Ising model in a field. 

Using the characterisation (3.8) we have 

(3.13) 

or 

(U,+ i a k  } - h'f2 = B ((UnUk) -M') (3.14) 

so that correlations decay exponentially. This is to be expected since (3.13) simply 
describes a Markov chain. 

This parametrisation of the one-dimensional Ising model is also useful for demon- 
strating the decimation renormalisation group transformation (see Nelson and Fisher 
1975). We wish to demonstrate that if one  selects as a new set of sites, every second 
site from a one-dimensional Ising model, the probability distribution on this new set is 
simply that of a one-dimensional k ing  model. 

One  puts 

P(v,+ 1 /an -1 ) = 1 P(a, + 1 (3.15) 

The  parameters of the growth model characterisation transform as A + A  + A B ;  
B + B z .  This transformation leaves M = A/(1- B )  invariant as it must since the spin 
distributions on the new lattice are equivalent t o  those on the original lattice. 

)P(a ,  - 1) = f[ 1 + u" + 1 ( A  + A B  + B2un - I)]. 
U" 
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The  final characterisation of the one-dimensional Ising model is the Markov 
random field characterisation. If we write the dependence of ai on all other sites as 

- (1 + uaiai-1)(1+ uaiai+l)(l +ha, )  
1 + u2a i -1a i+1  + Uh(Ui+l +ai-1) 

- (3.16) 

since all terms not containing ai cancel between the numerator and denominator. The  
Markov random field criterion is that 

(3.18) 

Evaluating (3.18) verifies that (3.16) is a Markov random field characterisation of the 
one-dimensional k ing  model. 

4. Models with special symmetry 

The most common form of graphical expansion for Ising models in the high-tempera- 
ture regime starts from the van der Waerden linearisation shown in equation (3.3) and 
represents each term in the expanded product by a graph. 

In general if 

E = - ~ K  R ~ R  
R 

(4.1) 

e x p ( - E / k T ) = n  [cosh K / k T ( l  +aRu~)] (4.2) 
R 

where uR = t anh (KR/kr ) ,  R denotes arbitrary subsets of sites and UR is the product 

Each term in the expanded product is mapped onto a graph (or hypergraph if any 
of the sets R contain more than two sites), so that for example factors u a p f  are 
represented by a line from i to j .  The only graphs which contribute to the sum over all 
a states of exp( - P E )  are those with an even number of spin variables associated with 
each site. 

For growth models we use a graphical expansion based on combining the product 
(4.2) into the form ( 2 . 2 ) .  If one  has a lattice symmetry then one  can choose the growth 
direction implied by ( 2 . 2 )  in several ways. The graphical representation of the terms 
u2 f (neighbours) for any basic cell of the lattice will be an arrow indicating which is the 
distinguished site i for that cell. 

The next stage in the development is to choose different directions for different 
regions of the lattice and to obtain correction terms for the boundary between the 
regions. Figure l (a )  shows how the orientations would be chosen for the factorisation 
(3.1 1) used for the one-dimensional Ising model. Figure l(6) shows such a choice for 
a lattice with rectangular symmetry. For a growth model with aIf depending on  
C ~ - I , ~ ,  ~ , , ~ - 1 ,  C T , - ~ . ~ - ~  this choice implies: 

ni E R(+I. 
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Figure 1. The orientation of cells used in obtaining special growth model solutions. In 
each cell the arrow points to the spin singled out by the growth model characterisation. 
Heavy shading shows the boundary region. (a )  The one-dimensional Ising model; ( b ) .  (c) 
square lattice models with correlations in two different quadrants; ( d )  linear correlations 
in  a model with reflection symmetry: ( e ) .  (f) triangular lattice models with correlations in 
two different sectors. 

( a )  The equivalent Ising model interactions which combine to give expressions of 
the form (2.2) are those within the four-site cells (see I). 

( b )  The only interactions which are overcounted or undercounted by this pro- 
cedure are those common to two cells on opposite sides of the boundary, i.e. 
single-site interactions on boundary sites and pairwise interactions along the 
boundary line. 

(c) The  correction terms in ( b )  are the only factors which contribute either to the 
partition function o r  to two-site correlations for sites in the boundary line. 
Any other contribution. from the cells (represented by a cell with an arrow) 
will imply an odd spin u, at the end of the arrow. If this spin is not to 
contribute 0 i t  must be cancelled by one of the spins of a neighbouring cell 
further from the boundary and this implies another ‘odd’ spin which must in 
turn be cancelled by more distant spins. Again this process terminates, i f  a t  all, 
only at the boundary of the whole system. If all the factors involved are of 
magnitude less than one (and this will be the case i f  (2.2) is to represent 
probabilities) then the contributions from the growth model cells becomes 
negligible as the system becomes arbitrarily large. 
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If the system had fu l l  square lattice symmetry then all sites along the boundary 
would be equivalent and the ‘correction’ interactions would be those of the one- 
dimensional Ising model. (The only site for which this is not obvious and  has to be 
checked by explicitly writing down the interactions is the boundary corner). As shown 
in the previous section this implies that correlations decay exponentially with distance 
along the boundary line. 

For systems with rectangular symmetry we have different interactions along the 
two line segments and the correction field at the corner is different from that at other 
sites. We  treat this system as a Markov process using a decomposition of the type 
(3.8) in each segment. If the boundary sites are indexed - N to N with 0 as the corner 
site we have 

~ ( o b o u n d a r y ) =  II i [ l+(+n+l(u + b a n ) ]  JI ( 1 + a n ( a  +Pan-1))(1+ha(,) (4.13) 
n <(I n > O  

where the contribution h is obtained from combining the corner correction described 
above with a correction arising from having two different Markov parametrisations 
meeting at the corner. Translational invariance gives 

whence h = 0. Using the results of equation (3.4) we have 

b ( ( a n a m -  1)  - M ~ )  n < m s O  

( U n u m )  - M’ = P ( ( a n a m - 1  - M ~ ) )  n s O , m > O  (4.4) 1 (1 -M*)blnlpiml n S O ,  m 3 0 .  

Figure l (6)  has only used the symmetry of invariance under reversals of the growth 
direction but, as shown in figure l(c), if one requires correlations in the quadrants 
which contain the growth direction one  must have invariance under all rotations of the 
growth direction. If we have full rectangular symmetry all correlations decay as given 
by (4.4) while if we have only symmetry under reversal of the growth direction (4.4) 
applies only in certain sectors. (As found by Gibberd (1969) for the anisotropic 
triangular Ising model.) If we have invariance under reflection about one  of the axes 
then the construction in figure l(d) shows that we can expect exponential decays for 
correlations between pairs of sites lying in the mirror line. 

Figures l(e, f) show how the same techniques can be applied to the fully symmetric 
triangular growth model studied in 11. In this case the only correction interactions are 
single-site interactions as the cells have no  shared edges so that 

r ZO. (4.5) 
2 

(soar) = M 

W e  conclude this section by re-deriving the susceptibility of a second-neighbour Ising 
growth model. This model was considered in I11 but the parametrisation given here is 
more suitable for comparison with series expansions. 

The  two Ising model interactions are denoted J1, J2 and we use the conventional 
expansion variables 

v = t anh(J l /kT)  (4.7u) 

w = tanh(J2/kT).  (4.7b) 
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So that we can associate a definite energy function to each square cell we divide the 

J I = K + L  ( 4 . 8 ~ )  

x = tanh(K/kT) (4.8b) 

y = tanh(L/kT) ( 4 . 8 ~ )  

U = (x + y ) / ( l  +xy). (4.8d) 

If we denote the four spins around the square by a, b, c, d = * 1 then we assume L acts 
between a and b and between a and c while K acts between c and d and b and d. 

interaction J1 into two contributions K and L :  

The  contribution of the cell to exp( - P E )  is 

C(l +yab)( l+  yac)(l +xcd)(l +xbd)(l + wad)(l+ wbc). (4.9) 

The  construction used in figure 1(b) can be used if expression (4.9) can be written so 
that all non-constant terms are linear in spin d, i.e. if (4.9) can be written in the form 
(2.2). We want the coefficient of ab (which is equal to the coefficient of ac) and the 
coefficient of bc, to vanish, i.e. 

(4. l o a )  

(4.10b) 

w = - (x2+ y 2 +  2xyw +x2w + y2w2+x2y2w) 

y = -(xw +yw +yx2+xw2+x2yw +xwy2+y2w2x) 

and from (4.8d) we have 

x = v(1 +xy)-y. (4 .10~)  

In terms of figure l(b) the boundary line has been given a contribution L from cells 
on both sides of the line but has no contribution K and so the ‘correction’ interaction 
is K - L. The nearest-neighbour interaction for spins on the boundary line is 

t = tanh[(K - L ) / k T ]  = (x - y ) / ( l  -xy). (4.11) 

Since the correlations satisfy (4.4) (with M = 0) we can sum over all correlations to 
find 

x = (E)2. (4.12) 

The  equations (4.lOa)--(4.lOc) can be used in the order a, 6, c to obtain a series 
expansion for x, y ,  w in powers of U .  The initial approximation for the iteration is 
x = U, y = w = 0. The  results are: 

w = - v 2 + 2 v 4 - 9 ~ 6 + 4 8 ~ R - 2 8 9 ~ 1 0 +  1 8 7 0 ~ ’ ~ -  1 2 7 0 9 ~ ’ ~ + .  . . (4.13) 

representing the constraint which makes the .second-neighbour Ising model a growth 
model; 

t = U - 2 u 3 +  10v5- 56u7+ 350u9-2326~” + 1 6 1 3 ~ ’ ~  - .  . . (4.14) 

for the nearest-neighbour correlation; 

x = 1 + 4 ~ + 8 ~ ~ + 4 ~ ~ - 1 6 ~ ~ -  1 2 ~ ~ + 8 8 ~ ~ + 1 0 8 ~ ~ - 4 4 8 ~ * - 7 0 8 ~ ~ + 2 6 6 4 ~ ~ ~  

+ 4 9 0 8 ~ ” -  1 6 8 4 8 ~ ’ ~ - 3 4 6 0 4 ~ ’ ~ + 1 1 2 3 7 6 ~ ’ ~ + .  . . (4.15) 

for the susceptibility. 
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In view of the connections between growth models and disorder points (see I and 
111) it might have been expected that the disorder point of a Union Jack lattice 
(Stephenson 19706) would involve a simple cancellation of interactions, similar to 
that described above. This however is not the case since disorder point correlations in 
the Union Jack model do not have a simple exponential decay. 

5. Two special models 

Two systems which illustrate applications of the various characterisations described 
above are those analysed by Verhagen (1976) and Welberry and Miller (1978). In 
each case the important symmetry is that of invariance under reversal of the growth 
direction. The earlier discussions have concentrated on the cases which also have the 
maximum symmetry within the layers orthogonal to the growth direction but this 
restriction is for reasons of convenience and most of the results described below carry 
through to less symmetric systems. 

Verhagen (1976) considered a ‘triangular’ type model, i.e. one in which v1, 
depended only on u, -~ , ,  and u ~ , , - ~ .  He constructed his probabilities so that the 
sequence could also be characterised by a Markov chain from U,, to u ~ , - ~  to C T , + ~ . , - ~  to 
u ~ + ] , , - ~  to u ~ + ~ , , - ~  etc as shown in figure 2(a) .  Once the Markov chain characterisation 
is obtained the solutions for single-site expectations and correlations within the chain 
can be found as in 43. 

1 1  

1 1  

I 

r i  I 

(01 I61 

Figure 2. Characterisation of Verhagen’s models. ( a )  the line along which Verhagen 
constructed a Markov chain; ( b )  the cell orientation for the graphical solution. Unlike the 
system shown in figures l(e,  f), the absence of three-site interactions enables us to equate 
triangles of opposite parities. 

As pointed out by Enting and Welberry (1 978) there are other ways of looking at 
this model. One can start with the general triangular lattice growth model and require 
that it be invariant under reversal of the growth direction. In terms of the Ising model 
parametrisation given in I this is a requirement that there be no three-site interaction 
between u ~ ~ , u ~ , ~ - ~  and u,-~, , .  From this starting point there are two different ways of 
solving the model: 

(i) The construction in figure 2(6) shows how the ‘correction’ interactions must be 
those of a one-dimensional Ising model and so one has an Ising model 
distribution on {U,, : i + j = n} .  

(ii) Because of the reversibility the layer with i + j = n  depends on the layer 
i + j = n + 1 in the same way as n depends on layer n + 1 and for an individual 
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spin all this dependence is through its neighbours. This means that layer n and 
layer n + 1 together form a Markov random field or equivalently a one- 
dimensional Ising model. 

The results of these two approaches are equivalent to those by Verhagen since, as we 
have seen in 9: 3, an Ising model on the set of sites shown in figure 2(a)  will give a 
distribution equivalent to a Markov chain on those sites and the distribution on the set 
of alternate sites will also be that of a one-dimensional Ising model (see equation 
(3.15) or Nelson and Fisher 1975). 

When we consider three-dimensional models the Markov chain characterisation 
cannot be used but the other two methods described above can be used virtually 
unchanged. Welberry and Miller (1977) described a simple cubic lattice with a growth 
direction along the body diagonal of the cubes so that site i ,  j ,  k depended on sites 
i - 1, j ,  k ,  i, j - 1, k and i ,  j ,  k - 1. They restricted their consideration to zero field SO 

that reversibility of the growth direction implied that the only interactions occurring in 
a three-dimensional Ising model characterisation were two-site interactions along the 
cubic axes and two-site interactions within layers orthogonal to the growth direction. 
As above one can either take the reciprocal dependence of adjacent layers to say that 
pairs of layers form a Markov random field or equivalently a honeycomb lattice Ising 
model or one can perform a construction analogous to figure 2 ( b )  and show that the 
correction interactions are pair interactions in the (1 11) planes and so the spin 
distribution on each layer is that of the triangular lattice Ising model. The equivalence 
of the spin distribution of the alternate sites of a honeycomb Ising model to the 
distribution for a triangular king model is given by the well known star-triangle 
transformation (see for example Syozi 1972). 

Instead of using the (1 11) planes to divide the space into two regions with opposite 
growth directions we can also use the (110) or (100) planes. In the former case the 
correction interactions are those of a rectangular lattice Ising model while in the latter 
case they are those of an (anisotropic) triangular Ising model. In other words we have 
a three-dimensional Ising mode! with only pairwise interactions, but the correlations 
in a number of planes are those of two-dimensional Ising models. (If we regard the 
lattice as FCC rather than sc then we have a model with only nearest-neighbour 
interactions.) 

The interactions in the models are most easily described in terms of variables 
Ki = JJkT.  If one had. three variables K 1 ,  K2,  K3  and regarded them as interac- 
tions on a honeycomb lattice then one could use the star-triangle transformation 
(Syozi 1972) to construct three new variables K ;  (Kl, K2, K 3 ) ,  
K ;  (K1, Kr, K3), K i  (K1, Kz, K3) which are interactions for an ‘equivalent’ triangular 
lattice model. We construct a three-dimensional growth model on a simple cubic 
lattice by using the interactions 

K1 : [loo] direction 

K z  : [OlO] direction 

K3 : [001] direction 

- K ;  : [ O l  I ]  direction 

- K i  : [ l o l l  direction 

- K ;  : [110] direction 
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Given this prescription we have: 
(i) Correlations in a (1 11) plane are those of triangular Ising model with inter- 

actions ( K i ,  K ; ,  K i ) .  
(ii) Correlations in a (100) plane are those of a triangular Ising model with 

interactions (K2 ,  K3 ,  - K \ ) .  Permuting indices 1, 2 ,  3 gives the correspond- 
ing results for (010) and (001) planes. 

(iii) Correlations in a (110) plane are those of a rectangular Ising model with 
interactions (K3, K ;  ). 

(iv) A lattice consisting of a pair of adjacent (1 11) planes will have the correlations 
of a honeycomb Ising model with interactions ( K , ,  Kz,  K3). 

Since these various subsystems interset we have a number of equivalences between 
correlations on different Ising models. The connection between (i), (ii) and (iv) was 
exploited by Baxter and Enting (1978) in their algebraic solution of the Ising model 
energy. These connections (in a more general form) have previously been obtained by 
Baxter (1978). 

Going back to the case K 1  = K 2  = K 3  = K ,  K’, = K ;  = K ;  = K’ the growth model 
constraint is 

w 2  = (. + u2)/(i + u 3 )  (5.1) 
w = tanh K (5 .2a )  

U = tanh K ’ .  (5.26) 

Working in terms of the energy parameters J = kTK for the (100) directions and 
- J ‘ =  - kTK‘ for interactions in the (111) planes, we can fix J ,  J ’  and regard the 
growth constraint (5.1) as giving a temperature at which the correlations are given by 
two-dimensional solutions. A solution will exist if 

O < J ’ / I J I = R  S R , , , z 0 . 6 5 5 .  ( 5 . 3 )  

For values of R in the range 0.5 to R,,, there will in fact be two solutions for the 
temperature. 

6. Conclusions 

The results presented in the preceding sections have shown how, in symmetric crystal 
growth models, a regrouping of conventional high-temperature expansions for Ising 
models leads directly to a number of special properties of correlations. The  graphical 
solutions have exhibited the exponential decay found by Pickard (1977) and con- 
jectured by Welberry (1977a), and have also shown how the Markov chain behaviour 
described by Pickard arises with the formalism of the Gibbs probability distribution. 
O n e  special case obtained is the confirmation that all two-site correlations vanish in a 
growth model with full triangular symmetry. The introduction of ‘correction’ inter- 
actions associated with the graphical expansions show how an effective reduction of 
dimensionality arises in these models. The  three-dimensional model described by 
Welberry and Miller is particularly interesting because the individual layers have the 
distribution of a two-dimensional k ing  model. In other words the time evolution of 
the growth model corresponds to a Monte Carlo simulation of a two-dimensional Ising 
model. O n  the other hand using the methods of I the space-time characterisation of 
the growth model is equivalent t o  a conventional Ising model in statistical mechanics 
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and so the normal techniques of equilibrium statistical mechanics can be used to 
explore the spatial-temporal properties of a simulation procedure. Furthermore, the 
three-dimensional characterisation is particularly simple involving only two-site 
interactions. Investigations of this system are currently progressing. 
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